Analysis of Rollover Shape and Energy Storage and Return in Cantilever Beam-type Prosthetic Feet
نویسندگان
چکیده
This paper presents an analysis of the rollover shape and energy storage and return in a prosthetic foot made from a compliant cantilevered beam. The rollover shape of a prosthetic foot is defined as the path of the center of pressure along the bottom of the foot during stance phase of gait, from heel strike to toe off. This path is rotated into the reference frame of the ankle-knee segment of the leg, which is held fixed. In order to achieve correct limb loading and gait kinematics, it is important that a prosthetic foot both mimic the physiological rollover shape and maximize energy storage and return. The majority of prosthetic feet available on the market are cantilever beam-type feet that emulate ankle dorsiflexion through beam bending. In this study, we show analytically that a prosthetic foot consisting of a beam with constant or monotonically decreasing cross-section cannot replicate physiological rollover shape; the foot is either too stiff when the ground reaction force (GRF) acts near the ankle, or too compliant when the GRF acts near the toe. A rigid constraint is required to prevent the foot from over-deflecting. Using finite element analysis (FEA), we investigated how closely a cantilever beam with constrained maximum deflection could mimic physiological rollover shape and energy storage/return during stance phase. A constrained beam with constant cross-section is able to replicate physiological rollover shape with R = 0.86. The ratio of the strain energy stored and returned by the beam compared to the ideal energy storage and return is 0.504. This paper determines that there is a trade off between rollover shape and energy storage and return in cantilever beam-type prosthetic feet. The method and results presented in this paper demonstrate a useful tool in early stage prosthetic foot design that can be used to predict the rollover shape and energy storage of any type of prosthetic foot.
منابع مشابه
Shape Design Optimization of Unimorph Piezoelectric Cantilever Energy Harvester
The most promising method for micro scale energy scavenging is via vibration energy harvesting which converts mechanical energy to electrical energy. Using piezoelectric cantilevers is the most common method for vibration energy harvesting. Changing the shape of the cantilevers can lead to changing the generated output voltage and power. In this work vibration energy harvesting via piezoelectri...
متن کاملEnergy storage and return prostheses: does patient perception correlate with biomechanical analysis?
The development and prescription of energy storage and return prosthetic feet in favor of conventional feet is largely based upon prosthetist and amputee experience. Regretfully, the comparative biomechanical analysis of energy storage and return and conventional prosthetic feet is rarely a motivation to either the technical development or clinical prescription of such devices. The development ...
متن کاملComparison of methods for the calculation of energy storage and return in a dynamic elastic response prosthesis.
The standard method used to calculate the ankle joint power contains deficiencies when applied to dynamic elastic response prosthetic feet. The standard model, using rotational power and inverse dynamics, assumes a fixed joint center and cannot account for energy storage, dissipation, and return. This study compared the standard method with new analysis models. First, assumptions of inverse dyn...
متن کاملThe influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
BACKGROUND Below-knee amputees commonly experience asymmetrical gait patterns and develop comorbidities in their intact and residual legs. Carbon fiber prosthetic feet have been developed to minimize these asymmetries by utilizing elastic energy storage and return to provide body support, forward propulsion and leg swing initiation. However, how prosthetic foot stiffness influences walking char...
متن کاملResonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester
The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...
متن کامل